
Supplementary Material: Architecture
Enforcement Concerns and Activities - An

Expert Study

Sandra Schröder, Matthias Riebisch, and Mohamed Soliman

University of Hamburg, Department of Informatics,
Vogt-Koelln-Strasse 30, 22527 Hamburg, Germany

1 Architects’ Activities for Enforcement

During the interview we asked all participants the question: How do you ensure
that your architecture and your concerns are implemented as intended? Do you
follow any strategies?. The result of this question is a categorization of activities
that architects apply in order to enforce and validate their architecture decisions.
Figure 1 shows the identified categories. In the following we describe the two cat-
egories Coaching and Supporting and Assessing the Decisions’ Implementation
in more detail. Moreover we discovered several dimensions that are important
for those activities.

Fig. 1. Enforcement Activities as a mindmap

1.1 Coaching and Supporting

It is important that architects provide guidance during the implementation phase
in order to support developers in their programming activities. Coaching was
mentioned to be highly important both for explanation and motivation. Both is
crucial to provide a clear picture and a shared understanding for architecture
solutions, the corresponding design decisions, together with its goals, motivation
and benefits: ”I have to explain [the developers] the term ”architecture” and
they have to internalize and understand what are the goal of architectural design
and what has to be supported by the architecture...” (code: architect as a coach,
Participant B) or ”...as an architect you are committed to teach the developers



2 Sandra Schröder and Matthias Riebisch and Mohamed Soliman

and explain them what it is about...” (code: architect as a coach, Participant G).
A combination of coaching and supporting can be done in several ways.

– Architecture Models For example, coaching can be supported by using
appropriate architecture models so that a shared understanding between
the people in the team about the architecture can be achieved: ”...we need
models. In order that we can discuss appropriately, otherwise everyone has
a different picture in his mind [...] and you don’t know if the other has
understood the same thing as you.” (code: using models for comprehension,
Participant B).

– Architectural Templates and Prototypes For example, the architect
can provide architectural templates and prototypes in order to guide how a
specific decision has to be implemented or a specific technology has to be
used, and he provides support by pre-fabricated building blocks. Architec-
tural prototyping is another effective technique that combines support for
developers with early identification and solution of high-risk aspects during
early stages of the development process. Those templates can also be used to
provide a reference during the implementation for the developers, that is for
coaching and guiding purposes: ”...you build something as an example and
present it to the developers...” (code: architectural templates, Participant
A). It was emphasized by participant A, that those templates should be
built precisely and carefully according to architectural decisions and state-
of-the-art best practices. Otherwise developers could violate the underlying
decisions without knowing it because the architect did not show it correctly.

Dimensions for Feedback and Coaching During the data analysis we found
an interesting statement made by an expert: ”...this is an aspect that you can
easily underrate, but should not to be. There is no process, no methodology, no
tool that makes sure having a good architecture. You simply need a number of
people that have a feeling, the talent, the intelligence how to make architecture
right...” (codes: architecture awareness, personal quality; Participant B). This
statement reports that personal quality in terms of knowledge, skills and experi-
ences are an important factor in architecture enforcement. This was an important
aspect we did not considered before, that is that people are as important - if not
more - as dedicated tools and processes. Consequently we additionally searched
for statements that were related non-technical aspects regarding architecture en-
forcement. We found the following dimensions: During the enforcement activities
it is important to consider the different dimensions for feedback and coaching
in an integrated way. Both dimensions emphasize that personal quality is an
important factor in architecture enforcement. If those dimensions are not ap-
propriately addressed during enforcement activities, it is likely that concerns as
presented in the previous sections cannot be satisfied. We found the following
dimensions during the analysis:

– Skills, Experiences, Programming Habits: Every developer has a dif-
ferent set of skills and experiences, e.g. from previous projects and from his



Architecture Enforcement Concerns and Activities - An Expert Study 3

education. Those qualities and together with personal programming habits
influence greatly how developers make low-level decisions and how they im-
plement architectural decisions. The low-level decisions could violate impor-
tant architecture decisions: ”...and if I leave it to the developers then it does
not work since every developer has a different background and experiences.
When I tell them that they should start with programming, then this leads to
chaos...” (code: programming habits and experience of developers).

– Architecture acceptance: We define architecture acceptance as the degree
to which a programmer is willing to implement the prescribed architecture.
The architect should always be ”... anxious that the developers accept the
architecture and that they want to implement it this way.” (codes: encour-
age acceptance of developers for architecture, willingness; Participant B).
The architects have to encourage developers to achieve the architecture’s
acceptance, otherwise it is likely that architecture rules are not followed and
consequently violated.

– Architecture awareness describes the consciousness of developers regard-
ing the prescribed architecture, its rationale and its goals that have to be
achieved with it: ”skilled people do automatically know how they ensure ar-
chitecture, because they know, why it should be like that. Then - without help
- developers have the architecture in their mind and recognize if architectural
goals are ensured or not.” (codes: architecture awareness, personal quality;
Participant B). If developers are not aware of architecture goals it might
happen that they unintentionally violate the architecture. The architect is
responsible for achieving and encouraging architecture awareness appropri-
ately; coaching and supporting are activities to address this dimension.

– Shared understanding: There must be a coherence of concepts between
the members of a team about how an architecture looks like. Mostly, an
architecture is constructed in the mind of the developers and the architects –
either supported by models, diagrams or by speech – and it is important that
all of them have the same imagination about the architecture in their mind:
”a common picture - keyword modeling - is very important here, to have a
starting point and to have it started in the same direction” (code: common
understanding of architecture, using models for comprehension, Participant
B). If a shared understanding about the architecture is achieved it is more
likely that architectural rules are ensured and followed by the developers.

1.2 Collaboration - Involvement and Gathering Feedback

Regular discussion with the developers was mentioned as necessary, especially for
discussing architectural violations or getting feedback from the developers con-
cerning the architecture design. The architect has to be available for potential
feedback given by the developers as they might not agree with the architecture
solution given by the architect. Gathering feedback from the developers and hav-
ing regular discussions with them is considered as crucial, e.g. in order to possibly
revise the architecture and its underlying decisions (see Revising the Architec-
ture). It is seen as valuable to involve the development teams during the code



4 Sandra Schröder and Matthias Riebisch and Mohamed Soliman

review which allows discussions about architecture violations: ”...we had regular
meetings with the developers and showed the developers where are deficiencies in
the architecture and where rules were violated. Of course we tried not to blame
them, but developed with them a solution in order to repair the deficiencies.”
(code: discussion of violation, Participant E). Collaboration is strongly related
with the activities ”Coaching and Supporting” and ”Revising the Architecture”.

1.3 Adjust Architecture to Developers’ Knowledge, Skills and
Experiences

This activity is also strongly related with the ”Dimensions for Feedback and
Coaching”. As described in the previous section, developers have different levels
of knowledge and experiences, either influenced from previous projects or ed-
ucation. The architect should ideally know about the level of experiences and
knowledge, e.g. what kind of patterns and technologies they know. In order to get
the architecture accepted (see architecture acceptance), the architect should use
patterns and technologies that developers already know - if it fits to the intended
architecture goals and requirements. Then it is likely that architecture rules are
less violated, since developers are familiar with those concepts and they know
how to implement a specific decision. If concepts are new to them, the architect
is responsible for coaching and supporting developers adequately (see Coaching
and Supporting).

1.4 Revising the Architecture

In case the architect detects violations against the architecture, he always has
to think about reasons that could have caused those violations. One important
aspect could be that the architecture and the underlying decisions have to be
updated. For example, an architectural solution could be too hard to imple-
ment: ”...for example they [the programmers] said that it was not possible to
do it differently, because this and that was too complicated, so that we adapted
the architecture rules in consequence and said it has to be different here actually,
but otherwise it is too complicated.” (code: solution too complicated, Participant
E). Consequently, the architect has to be prepared to compromise concerning
his architecture solution and find an alternative solution that can both imple-
mented by the developers and meets the requirements. Another reason could
be that the assumptions on which the decisions were based were wrong: ”...[the
architect] makes a lot of decisions based on assumptions. And maybe some of
those assumptions were wrong. And the software developers [...] see that some
of those decisions cannot be implemented as it was intended by the architect.”
(code: gathering feedback by the developers, solution cannot be implemented,
Participant G).

1.5 Assessing the Decisions’ Implementation.

During the interviews we asked all participants the following question: What are
the specific steps when you inspect the source code in order to assess the imple-



Architecture Enforcement Concerns and Activities - An Expert Study 5

mentation of the architecture decisions? We developed the following categories
of activities that are strongly interwoven.

– Code Review. We found that code review is a consent activity for assess-
ing the decisions’ implementation. One architect stated that this activity
”is similar to the comprehension process of a developer who is new in the
team and tries to understand how the software systems works. But develop-
ers and architects have each different goals during this process. The developer
mainly wants to implement new features, while the architect wants to check
architecture conformance” (participant C). Architects form a mental model
of a software system and its relation to implementation based on architec-
tural decisions. By doing this they have specific imagination about what
they expect in the code: ”...a picture about if the components are appro-
priate, if the modules are implemented according to how it was intended...”
(Code: expectation about intended design, Participant C). In this process,
software architects often ask questions about the observed software systems
that entail exploration and navigation, such as who implemented this com-
ponent and where is a specific feature, architectural pattern, design pattern,
technology implemented or used. It is then evaluated informally if an imple-
mentation roughly represents this mental model. During this process, code
analysis tools can be used as a source of information: ”...what you can do
is, you run a code analysis tool and then you are looking at the spots that
are interesting...” (code: finding hotspots, results from code analysis tools
as first impression, Participant K).

– Repository Mining. One expert uses review systems in order to review
the implementation concerning architecture issues. In this way it is possible
to investigate what type of changes were applied on a set of classes and espe-
cially who did the change. Moreover they can trace back how an architecture
violation was introduced. They reproduce the steps of implementation and
try to understand rationale and code-level decisions behind past changes. If
an architect knows about the individual skills in a team, he can focus source
code inspections on changes by developers with less skills, inexperienced, or
new to a project. In this way he can raise his overall productivity as well
as reducing the risks: ”...you know basically who works on which parts, this
means if I know from experience that I have to have a closer look on what
he or she has created then it is possible that I have to inspect each class
[...] because he or she can create an unusual solution on the most unobtru-
sive parts” (code: focused inspection based on individual skills of developer,
Participant C).

– Model-Code-Comparison. We asked the participants how and if the ar-
chitecture documentation and models are used in assessments. Some experts
(B, I, J, L) use documented diagrams and models for conformance validation
between implemented software system and architecture. For this, they use
UMLclass diagrams, sequence diagrams or component diagrams and com-
pare them with models extracted from the underlying implementation. The
comparison is performed manually. For example they check if a message



6 Sandra Schröder and Matthias Riebisch and Mohamed Soliman

exchange between components complies to the prescribed behavior by com-
paring UML sequence diagrams extracted from source code with prescribed
sequence diagrams. (participant L).

– Automatic Validation of Architectural Constraints We also asked
architects to which degree they formalize architectural aspects in order to
allow a formal validation of a software architecture. Some experts also assess
the layer pattern automatically by using dedicated tools such as Sonargraph.
Additionally software architects define rules concerning such as naming con-
ventions, thresholds for complexity metrics or other low-level rules that can
be performed automatically by tools like Sonarqube or Checkstyle.


